Decision Algorithm
Additive \& Multiplicative Principles
In general the formula for the size of the union of two sets is

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

If $n(A \cap B)=0$ then

$$
n(A \cup B)=n(A)+n(B)
$$

If $n(A \cap B)=0$ ie $A \cap B=\phi$ then we say A and B are disjoint.

The number of outcomes in many complicated experiments can be counted by breaking up the experiment into unions of disjoint sets and the cartesian product of sets.

At a restaurant, part of your meal requires the choice of 1 soup from 4 options or 1 salad from 3 options.
stack choose soup

$$
7=n(\text { soups })+n(\text { salads })
$$

additive panciple

Ordering an ice cream cone requires choosing 1 of 3 sizes and then 1 of 2 flavors.
start choose size chook

$$
6=n(\text { sizes }) \times n \text { (flavors) }
$$

multiplicative principle

Decision Algorithm
The Decision Algorithm is a framework that classifies when to use the additive panciple and when to use the multiplicative manciple.
alternatives describes cases that use the additive principle
steps
ex

- choosing a soup or salad
- Choosing size and flavor of ice clean
describes cases that we the multiplicative principle
sup, salad are 2 alternatives
size, flaw er are 2 steps
$\left.\left.\begin{array}{l}\text { Step 1: } 6 \text { aitcomes } \\ \text { altecnative 1: } 3 \text { atcones } \\ \text { alte cnartive 2: } 2 \text { antcomes } \\ \text { altemactive 3: } 1 \text { aitcome }\end{array}\right\} 3+2+1\right\} 6 * 4=24$
step 2: 4 outcomes
alternative 1:2 adcomes $\} 2+2$
In this scencris there ace 24 artcomes
To get a final \# autcomes want to stact at innermost layers and work outwords. Employ add. oe mult. principle

This scenario described 24 outcomes

Using the Decision Algorithm Framework

At a build-your-ownburrito bar you need to choose white or brown rice, a kind of bean from 2 options (or no beans), choose a kind of main filling from 4 options, and choose a kind of salsa from 3 levels of heat.

Step 1: rice 2 $\left.\begin{array}{l}\text { alt .1 white rice } \\ \text { alt. } 2 \text { be com rice } \\ 1 \text { oft }\end{array}\right) 1+1$
step 2: beans 3 alt. 1 some kind alt. 2 no bean
2 opt.

Step 3: main 4
att. 1 some kind 4 opts) 4
step 4: salsa 3
alt. 1 some kind 3 gt) 3

There ace 72 ways to burls

A pin consists of 4 digits ($0-9$) or a bueccase letter followed by 3 non-
alt 1: 4 digit code 10000 repeating digits $(0-9)$ repeating digits $(0-9)$.

There ace 28,720 possible pins

